Connecting the Dots with Landmarks: Discriminatively Learning Domain-Invariant Features for Unsupervised Domain Adaptation
نویسندگان
چکیده
Learning domain-invariant features is of vital importance to unsupervised domain adaptation, where classifiers trained on the source domain need to be adapted to a different target domain for which no labeled examples are available. In this paper, we propose a novel approach for learning such features. The central idea is to exploit the existence of landmarks, which are a subset of labeled data instances in the source domain that are distributed most similarly to the target domain. Our approach automatically discovers the landmarks and use them to bridge the source to the target by constructing provably easier auxiliary domain adaptation tasks. The solutions of those auxiliary tasks form the basis to compose invariant features for the original task. We show how this composition can be optimized discriminatively without requiring labels from the target domain. We validate the method on standard benchmark datasets for visual object recognition and sentiment analysis of text. Empirical results show the proposed method outperforms the state-ofthe-art significantly.
منابع مشابه
Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملImage alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملInformation-Theoretical Learning of Discriminative Clusters for Unsupervised Domain Adaptation
We study the problem of unsupervised domain adaptation, which aims to adapt classifiers trained on a labeled source domain to an unlabeled target domain. Many existing approaches first learn domain-invariant features and then construct classifiers with them. We propose a novel approach that jointly learn the both. Specifically, while the method identifies a feature space where data in the sourc...
متن کاملSample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملUnsupervised Domain Adaptation with Similarity Learning
The objective of unsupervised domain adaptation is to leverage features from a labeled source domain and learn a classifier for an unlabeled target domain, with a similar but different data distribution. Most deep learning approaches to domain adaptation consist of two steps: (i) learn features that preserve a low risk on labeled samples (source domain) and (ii) make the features from both doma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013